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INTRODUCTION

Through the years, discussion has persisted about the value of mortality factors
as regulators and/or controlling factors within populations, particularly insect popula-
tions. The possibility of manipulating mortality factors to biologically control insect
populations has had an appeal that has given direction to thought of integrated pest
management proposals.

This paper deals with the probabilities of loss caused by a single mortality factor
acting alone or in combination with other factors. In any population study, there
remains “unknown” mortality that is not readily definable or measurable simply
because measurement techniques are inadequate. Previous work by COLE (1962,
1973a, 1973b, 1974 and 1975) dealt with measurement and evaluation of selected
mortality factors or with effects of these factors over a short period of time. The
study reported here deals with known factors over three infestation levels for 13 years.
The approach was to determine the probability of death, using competing risks
analysis of life tables (CHIANG, 1968) to evaluate the effects of these factors of
mortality—singly and in combination. In the end, it will be important to note the
variability (or lack of it) in the amount of mortality caused by these factors over
time.

DATA SOURCE

All known or suspected mortality factors were recorded by life stages of the
mountain pine beetle for each generation year between 1964 through 1977, and by
tree diameter and stage of infestation; i.e., preepidemic (1964-70), epidemic (1971-73)
and postepidemic (1974-77). This was done in concurrence with the model developed
by CoLE ef al. (1976). The infested tree was the sampling unit and, to minimize
between-tree variance, trees were stratified by diameter classes; i.e., 23cm d.b.h.
and less, 28 to 36 cm d.b.h, and 38 cm d.b.h. and greater. The random sampling
technique described by CARLSON and COLE (1965) focused on critical within-tree
measurements and sampling efforts. The objective of the within-tree measurement
was to characterize mortality by cause and life stages of the mountain pine beetle.

Two 15.2x15. 2-cm samples were taken at breast height per tree and the insect
population was recorded as individuals living and dead (by cause of death) within
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developmental stages of the beetle. Previous life table work indicated that dhservations
at five developmental intervals within a generation were sufficient to detect population
mortality by cause of death within the beetle’s developmental stages. Pertinent
developmental intervals within the life cycle for observations of mortality are as
follows: ’
' 0. Base population: The total number of eggs laid in starting population.

1. Late fall: Sample includes eggs and 1st and 2nd instar larvae that will

enter winter. : S
2. Early spring: Sample establishes the number of larvae that survived the
) winter. ‘ : '
3. Summer: Sample determines the late larval and pupal populations.
4., Late summer: The final count of emerging adult population, obtained by
caging the sample area.

Data were taken from infestations on three national forests: Wasatch, Teton, and
Targhee. Periods of infestations by intensity were determined from the mountain
pine beetle model (COLE ef @l., 1976) and spanned years as follows: )

Preepidemic (0-10% of trees killed annually) ..... 7 years (1964-1970)
‘Epidemic (10-45% of trees killed annually) ....... 3 years (1971-1973)
Postepidemic (0-10% of trees killed annually) ....4 years (1974-1977)

A special case occurred on the Cache National Forest in northern Utah. The
mountain pine beetle has been active in this particular area from 1971 to the present
time, or longer. The population has remained as a “high endemic” level over this
period of time, as will be discussed later in this paper, and shows some particularly
interesting relationships between the causes of mortality and the host populations.

DATA ANALYSES

The competing risks analysis (CHIANG, 1968) was used in the majority of analyses
because death is not a repetitive event and is usually attributable to a single cause.
Various risks, however, compete for the life of an individual and must be considered
in cause-specific mortality studies. This analysis is well reported in the literature and
was used by this author in previous publications (CoLE, 1974, 1975). Specifics of the
analysis will not be described here, except to state a few definitions:

Risk of dying—a 4mortality factor present in a population prior to death of an

individual within that population.

Cause of dying—a mortality factor that actually resulted in the death of an
individual in that population.

Crude probability—the probability of death from a specific cause in the presence
of all other risks acting in a population. It is also that mortality witnessed
in the uncontrolled insect population and that which we measured during
sampling for construction of the life table for the mountain pine beetle.
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General probability—probability of death (or survival) when the cause of death

is not specified.

The abridged cohort life table, in which a generation of beetles is sampled at
particular points in time, was used throughout our study of mortality factors within
the mountain pine beetle populations. The abridged cohort life table was not followed
in its strictest sense because of destructive sampling. Death of the last individual
was not recorded. Instead, the emergence of the adult beetle was equated with the
end of life for that particular cohort. Consequently, flight mortality was not considered.
In addition, we assumed that all individuals within the sample were subject to the
same forces of mortality (risks) and that the survival of one individual was independent
of the survival of any other group. By making this assumption, we avoided unnecessary
complications (CHIANG, 1968).

RESULTS AND DISCUSSION

The basic data for the construction of life tables and competing risk analysis
for the mountain pine beetle are shown in Table 1 and graphically in Figure 1.
These data were stratified by tree diameter class and by period of infestation.
Population numbers shown in both table and figure are on a sample basis; i e,
15.2x15.2 cm of bark area. '

Probabilities of survivael and life expectations

Beetle populations were greater numerically in the largest diameter tree class.
The population change among tree diameter classes in the preepidemic stage showed
a slight reversal; i. e, the starting population was greatest in the 30-cm trees, but
survival was greatest in the 38-cm trees. Epidemic populations followed expectation,

AVERAGE NUMBER OF INDIVIDUALS PER SAMPLE

40 1 2 3 4

OBSERVATION PER(OD DURING BEETLE GEVCRATION YEAR

Fig. 1. Mountain pine beetle brood survival by observation, by
tree diameter class, by stage of infestation.
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with population density directly related to tree diameter. During the postepidemic
infestation period, an inverse trend compared to the endemic period occurred. The
38-cm diameter class trees vcontained not only the largest starting populations, but
showed the greatest proportional mortality. The trend between the 23- and 30-cm
diameter classes was similar. This could be since the few 38-cm diameter trees
remaining after the epidemic simply could not support and/or produce much beetle
population because of excessive drying resulting from the increased attack density
(CoLE et al., 1976).

The general survival trend within each stage of infestation for each diameter
class was approximately of like magnitude with the greatest mortality occurring
between the late fall and spring periods; i.e., winter Kkill.

The probability of an individual surviving the entire growth period (egg to adult)
was determined for each diameter class within each stage of infestation (Table 2 and
Figure 2), i. e., when the cause of death is not specified, P:;=Pr {an individual alive
at age x; will survive to age xj}, i< ], i, j=0, 1, .... The probability increased

Table 2. General probabilities of an individual surviving the entire growth period
from egg to adult stages by tree diameter class and stage of infestation.

Stage of infestation Tree diameter class

23 cm 30 cm 38 cm
Preepidemic 0. 00196 0. 00551 0. 00850
Epidemic 0. 00900 0.01403 0. 00850
Postepidemic "~ 0.00360 0. 00776 0. 00223

0.014

0.012

0.010

0.008

0. 006 Postepidemic

PROBABILITY OF SURVIVAL

0.004

0.002

TREE DIAMETER CLASS (CM)

Fig. 2. Probability of any one egg surviving to the adult stage by
tree diameter class over stage of infestation.
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from the 23- to the 38-cm trees within the preepidemic period; during the epidemic
and postepidemic periods, the. probability peaked within the 30-cm diameter class and
was approximately equal in the 23- and 38-cm diameter classes. If we consider the
habitat and food supply only, then these trends are not unusual and relate well to
the expected. survival by phloem thickness within diameter class distributions within
a stand structure (AMMAN, 1969 ; CoLE and AMMAN, 1969). As the infestation
progresses, these probability-of-survival trends reflect the change in tree distribution
and characteristics. One might interpret this to mean that if the probability of
survival increases over diameter class dufing the pre‘epidemic stage of infestation then
an epidemic is likely to develop.

The peaks within the 30-cm diameter class during the epidemic and postepidemic
periods of infestation probably occur because the larger diameter trees have been
killed, leaving either fewer trees in each case to contribute to the survival data or
residual trees within this diameter class are slower growing and therefore provide
less food (thinner phloem) for beetle survival. These assumptions will be carried
further as we develop the influence and role of the mortality factors.

Life expectations

Life table studies focus centrally upon life expectation and survival rates. By
comparing these, we can evaluate the intensity of risks measured during the stages
of population growth. The rate of survival (or conversely, mortality) can more or
less govern life expectation. For the mountain pine beetle, the total life interval from
egg to egg can be assumed to be approximately 365 days. High mortality rates can
lessen life expectation,” whereas low mortality rates could lengthen life expectation.
Table 3 shows an abridged life table for determining proportions of death and survival,
life expectation, and the variances for both. _ h

Life expectations for the mountain pine beetle populations fluctuate somewhat
within diameter classes among stages of infestations and among diameter classes
within each stage of infestation, but generally increase from the smallest to the largest
diameter class and peak over time during the epidemic stage (Figure 3). Exceptions
are within observation times of brood development. Life expectation within the 30-cm
diameter tree class appears to be consistent. Less change would indicate. that the
30-cm diameter class could well be the carrying habitat for the mountain pinei beetle.
A strong positive trend over diameter occurred in the preepidemic stage. This trend
disappears in the epidemic and postepidemic stages with survival being higher in the
30-cm class. Survival peaks during the epidemic stage in all diameter classes. These
data suggest that the high survival in the 38-cm trees during the preepidemic stage
triggers the epidemic. The increased survival in the 30-cm trees during the epidemic
and postepidemic stages suggests that once the epidemic starts this diameter class is
the most important contributor to beetle population increases.

The greatest life expectations occur within the epidemic stage of infestation and
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TREE DIAMETER CLASS
) (CAY

1. DAYS

LIFE FXPECTATION &

OBSERVATION THME OVER GENERATIO! YTAR

Fig. 3. Life expectations (days) at each observed time over
generation year by diameter class within stage of infestation.

tend to equalize among diameter classes during the early brood developmental stages,
but shift in favor of the smaller diameter class in the late brood development stage.
There is a direct reversal between life expectations during the preepidemic and
postepidemic stages of infestation. During the preepidemic stage, the greatest life
expectations occur in broods within the larger diameters; during the postepidemic
stage, they occur within the 30-cm diameter class. This may be a reflection of the
diameter-phloem distributions within the stand before and after a mountain pine beetle
infestation or, as recent observations indicate, an effect of beetle quality generated in
large diameter trees.

We consider life expectation (2:) for discussion purposes because some interpreta-
tion can be made of its value based on @ prior: knowledge of the beetle. The increases
of life expectation, when they do occur, are probably associated with decreased attack
density of the beetle by diameter from the preepidemic to the epidemic stage (COLE
et al., 1976). During the postepidemic period in particular, a minimal number of
large diameter trees remain, however, and these are usually not conducive to brood
production. Associated with this lack of large trees is an increase in attack density
(CoLE ef al., 1976). Increased attack density increases the rate of tree drying and
beetle mortality due to this drying.

General probability of survival
The general probability of survival from one growth interval to the next follows
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Fig. 4. Probability of survival in the next interval by tree
diameter class during stage of infestation.

the configuration of life expectations (Figure 4). During the preepidemic period of
infestation, the general probability of survival increases over diameter class within
each brood developmental period. The chance of survival shifts slightly in favor of
the 30-cm diameter class during the epidemic and continues to strengthen in this
diameter class during the postepidemic stage of infestation over each brood develop-
mental period.

Within diameter class, over stage of infestation, the probability of survival
generally peaks during the epidemic. This probability is greater during the postepidemic
stage than during the preepidemic stage in the 23- and 30-cm diameter classes, but
the reverse is true within the 38-cm diameter class (Figure 5). This again may be
due to the pattern of tree killing during the epidemic, i.e., the beetle progressively
destroys its preferred food supply (large diameters) over the life of the infestation.

The data and analyses to this point support the theory that the 30-cm diameter
trees are supporting the beetle population in the main. The 38-cm trees may in fact
supply the impetus for starting epidemics, but, because of their fewer numbers and
early elimination from the stand, these trees quickly lose their commanding position.
Consequently, the 30-cm diameter trees, which are still more than sufficient for beetle
population growth, carry the bulk of population growth through the epidemic and
into the postepidemic stage of infestation. The beetle produces less brood in these
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TREE DIAMETER CLASS

1.0
0.81-
0.6
0.4
0.2

STAGE OF INFESTATION
Postepidemic

PROSABILITY OF SURVIVAL IN THE NEXT INTFRVAL

Lo
0.8
0.6

c4 Pos'epidenic
0.2

0 1 3 3 7 Preepidemic
OBSERVATION TIA¥ OVER GENERATION YEAR

Fig. 5. Probability of survival in the next interval by stage of
infestation within tree diameter class.

23-cm trees, probably through the lack of adequate habitat for the beetle and
increased rate of drying. The chance-of-survival increase in these trees during the
peak of the epidemic is probably due to the greater number of these trees being
infested, the reduced attack density, and possibly to an artifact of population sampling.
Crude probabilily of death

The general mortality is the total mortality for a particular point in time. The
component probabilities of death (crude probabilities) caused by the specific mortality
factors are additive to and constitute the general mortality. As in most cases, the
greatest cause of mortality is shown as “unknown.” This “unknown” category accounted
for approximately 50% of the mortality that occurred during any generation of beetles,
within any diameter class of trees, and during any one stage of infestation (Figure
6). We believe, however, it quite reasonable and proper to assume by reason of
sampling theory, that if this cause: was known, it would be proportionally distributed
among the other causes of mortality in respect to their occurrence. Thus, in the
interpretation of the following analyses, we will be concerned with the factors as they
were recorded and evaluated.

The crude probabilities of death due to specific mortality factors are shown in
Table 4 and Figure 7. The general probability of death is the rear profile in each
case (Figure 7). Smoothed curves have been drawn through mortality estimates for
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Fig. 6. Crude probability of death by specific mortality factors.

discrete points in time to facilitate visual appraisal of mortality trends over time.
Mortality read from these graphs, however, is only pertinent at that particular point
in time.

These data continue to substantiate previous studies (CoLE, 1974, 1975) showing
that temperature (winter-kill) followed by drying of phloem in the early summer
remain the two greatest causes of mortality of mountain pine beetle broods. These
factors generally decreased as diameter increased, and they varied with the stage of
infestation, with drying showing a steady increase in the 23-cm diameter class.
Specific mortality factors

Individual mortality factors (risks) measured were: within competition, i.e., mor-
tality from crowding of larvae within a single brood or egg gallery; between com-
petition, i.e., mortality from crowding of larvae from two or more separate or different
broods or egg galleries; the insect predators, Medetera aldrichii (Diptera: Dolichopo-
didae); Thanasimus undatulus and Enoclerus sphegeus (Coleoptera: Cleridae); the
insect parasite, Coeloides dendroctoni (Hymenoptera: Braconidae); woodpeckers; low
winter temperatures; drying of the phloem; pitch; and pathogens.

The probability of death due to a mortality factor is the proportion that factor
contributes to the total loss from all mortality factors. Interpretations are in the
context of probability of death occurring and not in numerical occurrence of the
mortality factor.

Within competition decreased over diameter during the preepidemic stage of
infestation, fluctuated during the epidemic stage, and decreased with diameter during
the postepidemic stage (Figure 8). Belween competition followed somewhat the same
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Fig. 7. Graphic display of crude probability of death from specific
mortality factors by tree diameter class within stage of infestation
over observation during generation year.
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pattern as within competition (Figure 9). Combining the effects of these two forms
of competition, or crowding, we find some minor fluctuations of these patterns during
the preepidemic and epidemic stages of infestation over diameter, but a definite
decrease of mortality due to these factors during the postepidemic stage (Figure 10).
Competition had the least influence within the 38-cm diameter class trees. Mortality
from both within and between competition was the same during the preepidemic and

30cm 38cm

PROBABILITY OF DEATH

Fig. 8. Crude probability of death due to within brood
competition by tree diameter class.
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Fig. 9. Crude probability of death due to between brood
competition by tree diameter class.
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Fig. 10. Combined crude probability of death from within and
between brood competition by tree diameter class.
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epidemic stages and peaked slightly during the postepidemic stage. Even though
populations can be expected to be greater within the 38-cm diameter tree class,
mortality from competition was probably offset by the better habitat and survival
conditions. Competition offers the greatest influence within the 23-cm diameter tree
claés for the opposite reasons. The peak mortality from competition occurred in the
30-cm trees during the epidemic stage and again probably reflects population density,
which occurred under these conditions.

Medetera aldrichii showed a density dependence over time (Figure 11). Not only
did Medetera show preference for the greater beetle populations by diameter class,

X Bem

PROBABILITY OF DLATH

Fig. 11. Crude probability of death from Medetera by
tree diameter class.

but preference increased by stage of infestation. This could be a proportional increase
since populations were decreasing. Because of this tendency, Medelera was the
principal insect predator/parasite that could warrant further investigation as a biological
control agent of the mountain pine beetle. Further, NAGEL and FiTZGERALD (1975)
have shown that M. aldrichii has a rather voracious appetite. ScHMID (1971) attributed
a major share of beetle mortality to M. aldrichii, but one should remember these
past studies refer to numbers of prey consumed by the predator. This current study
deals with probability of loss.

Thanasimus undatulus and Enoclerus sphegeus were recorded together as Clerids.
The probability of death by these Clerids was extremely minor and generally can be
(at least in this case) disregarded as exerting any real influence ‘on reducing mountain
pine beetle populations (Figure 12).

Any appreciable probability of death by Coeloides dendroctoni was restricted to
the 23-cm diameter trees and showed some increase over stages of infestation (Figure
13). This restriction to the smaller diameter trees is probably due to the thinner
bark—thicker bark restricts egg deposition by Coeloides, which has a rather short
ovipositor.

Probability of death due to wood peckers generally occurred in the 23- and 30-cm
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Fig. 14. Crude probability of death from woodpeckers by
tree diameter class.

diameter trees and showed an increase over stage of infestation in the 23-cm diameter
trees and a decrease in the 30-cm diameter tree classes. Little woodpecker-caused
mortality occurred in the 38-cm diameter tree class during any stage of the infestation
(Figure 14). This is partly a reflection of sampling at breast height, i. e., snow depths
prevented woodpecker activity during much of the winter. In additidn, thick bark
tends to discourage woodpeckers, and generally woodpeckers do not ndrmally seek
food in ‘the lower bole when food is readily available higher in a tree.

k Temperature alone présented the greatest influence of all mortality factors measured
(Figure 15). The evident peaks of probability of ‘death during the epidemic stage of
infestation are probably due to unusually low températures during that stage rather
than to the beetle population level. Probability of death due to temperature over
diameter class by stage of infestation, however, decreased (as would be expected) by
diameter class. The exception, surprisihgly, was the increased probability by diameter
class within the ‘postepidemic ‘stage. Mr‘ortality from dryidg could have well preceded
the mo'rtality from temperature in the flow of events. Also, mortality from cold, dry
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Fig. 16. Crude probability of death from drying of phloem
by tree diameter class.

trees is usually greater than from cold, wet trees.

Probability of death due to drying of the phloem increased over stage of infestation
within each diameter class, but decreased over diameter class within stage of infestation
(Figure 16). These observations reflect the general trend of phloem and sapwood (an
indicator of tree moisture) being thinner in trees remaining after each stage of an
infestation. Within each stage of infestation, drying in small diameter trees is greater
than in large diameter trees. This is consistent with both phloem and sapwood
thickness being directly related to tree diameter (AMMAN, 1978). The large increase
in drying in the postepidemic stage is probably influenced by increased attack and
gallery densities that occur in this stage of infestation (COLE el al., 1976). Drying of
the phloem and the resulting mortality are also related to woodpecker feeding and
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mountain pine beetle population level.

At the most, we experienced only 1.4 percent chance of an egg surviving to
an adult within the 30-cm diameter tree class, and then only during the epidemic
stage of infestation—all other stages were less than 1. Does this mean we are dealing
with an approximate difference of 0.5 probability of survival between epidemics and
endemics ? One must remember first, that these probabilities do not reflect population
numbers per se. The probability of any one individual surviving from the egg to the
adult stage is interesting from a statistical point of view and useful as an indicator
of infetation growth. From an entomological point of view, the percent survival from
egg to adult is probably more descriptive. In this case, percent survival varied from
an 11% increase from preepidemic to epidemic stage in the 23-cm trees, and only 4%
over the same period of time in the 30-cm trees. Again, we are dealing with a
rather small increase in survival between preepidemics and epidemics. In both cases,
probability of survival and percent survival, the trends reflected are approximately
the same; only the magnitude of index has changed. The mountain pine beetle is
synchronized so closely with stand development and growth that increased food supply,
as a contributor to population explosion, probably far outweighs the influence of
population reduction by biological and physical factors of mortality.

A special case

We have maintained one particular study plot on the Cache National Forest in
northeastern Utah that may best illustrate some of these points of interest. The
mountain pine beetle has been active in this particular area for 7 years or longer
(10-15% of trees killed annually). The population has remained at a constant “high
endemic” level over this period. If certain factors (risks) of mortality were to be
density dependent or independent, or if a steady mountain pine beetle population was
to provide an opportunity for these factors to increase, then certainly this situation
should have provided such an opportunity.

In this case, the probability of any one egg reaching the adult stage was 0.00358
for the populations within the 23-cm diameter class; 0.00639 for the 30-cm diameter
class; and 0.00560 for the 38-cm diameter class. These probabilities and the percent
survival for the Cache were comparable to, but greater than, survival recorded for the
postepidemic populations in the other plots (10.4% in the 23-cm, 10.5% for the 30-
cm, and 9.9% for the 38-cm diameter classes).

The crude probabilities for each mortality factor recorded are shown in Table 5
and Figure 17. Once again, these curves are comparable to the postepidemic popula-
tion levels found in the other study plots. Within competition mortality is greatest
within the 23-cm diameter tree class, while between competition mortality is greatest
within the 38-cm diameter tree class. Combined, these two mortality factors show
the greatest effect on population reduction in the smallest and largest diameter classes
(Figure 18).
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Fig. 17. Crude probabilities of death from specific factors by tree
diameter class for the special case, Cache National Forest.
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Fig. 18. Crude probability of death from within (a), between
(b) and combined within-between competition (c) for a
special case, Cache National Forest.

From the measured losses caused by parasites, predators, pathogens, and pitch,
about the same picture found in the other data sets emerged. That is, Clerids had
a minor influence on the amount of mortality (Figure 19a); Coeloides activity was
greatest in the smallest diameter class and least in the largest diameter class (Figure
19b); Medetera showed some density dependence with the greatest predation occurring
in the largest diameter class and least in the smallest (Figure 19¢); probability of
death caused by wood peckers was rather evenly distributed among diameter classes,
peaking in the spring within the 23-cm and in midsummer within the 30- and 38-cm
diameter classes (Figure 19d); mortalities causd by pathogens and pitch were highest
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Fig. 19. Crude probabilities of death from Clerids (a), Coeloides (b),
Medetera (c), woodpeckers (d), pathogens (e), and pitch (f) for a
special case, Cache National Forest.
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Fig. 20. Crude probabilities of death from low winter temperatures (a),
drying of phloem (b) and combined temperature-drying (c) for a special
case, Cache National Forest.

within the 23- and 30-cm diameter classes and during the fall (Figures 19 and f).
Temperature, again, had the greatest influence in the smallest diameter class.
The influence of drying followed a like pattern. Together, for any generation, these
two mortality factors caused the greatest reduction of mountain pine beetle populations
(Figures 20a, b, and ¢).
The interpretation of the probabilities presented here is that none of these risks
acting in the presence of other risks offers much, if any, regulatory influence upon a
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mountain pine beetle population. This agrees with REID (1963) that predators occurred
in too low numbers to be considered important control factors. Consequently, because
no single risk or combination of these risks offer much regulatory influence, the
contention that mountain pine beetle populations are food regulated is further streng-
thened (COLE and AMMAN, 1969). The evidence shows that the mountain pine beetle
is food regulated at optimum temperature conditions and temperature regulated at
high elevations where optimum food conditions prevail. Reducing and/or minimizing
tree loss to the mountain pine beetle is thus dependent upon manipulating the food
supply by management of the tree (stand) growth.

SUMMARY

The interpretation of the probabilities presented in this paper is that none of the
competing biological risks, acting in the presence of other risks, offers much, if any,
regulatory influence upon a mountain pine beetle population. Consequently, if no
single risk, or combination of these risks, offers much help, then the contention that
mountain pine beetle populations are food-regulated is once again strengthened (COLE
and AMMAN, 1969). The evidence remains (or continues) that the mountain pine
beetle is food-regulated at optimum temperature conditions and temperature-regulated
at optimum food conditions. Reducing and/or minimizing tree loss to the mountain
pine beetle is thus dependent upon manipulating the food supply or management of
the tree (stand) growth.
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